Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Evol Appl ; 15(5): 721-734, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35603023

RESUMO

Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether antidrive resistance will evolve to block the population suppression. An especially serious threat to some kinds of drive is mutations in the CRISPR cleavage sequence that block the action of CRISPR, but designs have been proposed to avoid this type of resistance. Various types of resistance at loci away from the cleavage site remain a possibility, which is the focus here. It is known that modest-effect suppression drives can essentially "outrun" unlinked resistance even when that resistance is present from the start. We demonstrate here how the risk of evolving (unlinked) resistance can be further reduced without compromising overall suppression by introducing multiple suppression drives or by designing drives with specific ecological effects. However, we show that even modest-effect suppression drives remain vulnerable to the evolution of extreme levels of inbreeding, which halt the spread of the drive without actually interfering with its mechanism. The landscape of resistance evolution against suppression drives is therefore complex, but avenues exist for enhancing gene drive success.

3.
Integr Comp Biol ; 62(4): 972-979, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-35551401

RESUMO

Many organisms use environmental cues to time events in their annual cycle, such as reproduction and migration, with the appropriate timing of such events impacting survival and reproduction. As the climate changes, evolved mechanisms of cue use may facilitate or limit the capacity of organisms to adjust phenology accordingly, and organisms often integrate multiple cues to fine-tune the timing of annual events. Yet, our understanding of how suites of cues are integrated to generate observed patterns of seasonal timing remains nascent. We present an overarching framework to describe variation in the process of cue integration in the context of seasonal timing. This framework incorporates both cue dependency and cue interaction. We then summarize how existing empirical findings across a range of vertebrate species and life cycle events fit into this framework. Finally, we use a theoretical model to explore how variation in modes of cue integration may impact the ability of organisms to adjust phenology adaptively in the face of climate change. Such a theoretical approach can facilitate the exploration of complex scenarios that present challenges to study in vivo but capture important complexity of the natural world.


Assuntos
Mudança Climática , Sinais (Psicologia) , Animais , Reprodução , Estações do Ano
4.
PeerJ ; 10: e13301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462772

RESUMO

Background: The sterile insect technique (SIT) has been used to suppress and even extinguish pest insect populations. The method involves releasing artificially reared insects (usually males) that, when mating with wild individuals, sterilize the broods. If administered on a large enough scale, the sterility can collapse the population. Precedents from other forms of population suppression, especially chemicals, raise the possibility of resistance evolving against the SIT. Here, we consider resistance in the form of evolution of female discrimination to avoid mating with sterile males. Is resistance evolution expected? Methods: We offer mathematical models to consider the dynamics of this process. Most of our models assume a constant-release protocol, in which the same density of males is released every generation, regardless of wild male density. A few models instead assume proportional release, in which sterile releases are adjusted to be a constant proportion of wild males. Results: We generally find that the evolution of female discrimination, although favored by selection, will often be too slow to halt population collapse when a constant-release implementation of the SIT is applied appropriately and continually. The accelerating efficacy of sterile males in dominating matings as the population collapses works equally against discriminating females as against non-discriminating females, and rare genes for discrimination are too slow to ascend to prevent the loss of females that discriminate. Even when migration from source populations sustains the treated population, continued application of the SIT can prevent evolution of discrimination. However, periodic premature cessation of the SIT does allow discrimination to evolve. Likewise, use of a 'proportional-release' protocol is also prone to escape from extinction if discriminating genotypes exist in the population, even if those genotypes are initially rare. Overall, the SIT is robust against the evolution of mate discrimination provided care is taken to avoid some basic pitfalls. The models here provide insight for designing programs to avoid those pitfalls.


Assuntos
Infertilidade Masculina , Reprodução , Humanos , Animais , Masculino , Feminino , Insetos , Modelos Teóricos , Genótipo
5.
J Econ Entomol ; 115(2): 387-400, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35137164

RESUMO

Some plant pathogens manipulate the behavior and performance of their vectors, potentially enhancing pathogen spread. The implications are evolutionary and epidemiological but also economic for pathogens that cause disease in crops. Here we explore with models the effects of vector manipulation on crop yield loss to disease and on the economic returns for vector suppression. We use two frameworks, one that simulates the proportional occurrence of the pathogen in the vector population with the option to eliminate vectors by a single insecticidal treatment, and one that includes vector population dynamics and the potential for multiple insecticidal sprays in a season to suppress vectors. We parameterize the models with published data on vector manipulation, crop yields as affected by the age of the plant at infection, commodity prices and costs of vector control for three pathosystems. Using the first framework, maximum returns for treating vectors are greater with vector manipulation than without it by approximately US$10 per acre (US$24.7/ha) in peas infected by Pea enation mosaic virus and Bean leaf roll virus, and approximately US$50 per acre (US$124/ha) for potatoes infected by Potato leaf roll virus. Using the second framework, maximum returns for controlling the psyllid vectors of Candidatus Liberibacter solanacearum are 50% greater (approximately US$400/acre, US$988/ha) but additional returns for multiple weekly sprays diminish more with vector manipulation than without it. These results suggest that the economics of vector manipulation can be substantial and provide a framework that can inform management decisions.


Assuntos
Hemípteros , Insetos Vetores , Animais , Gerenciamento Clínico , Pisum sativum , Doenças das Plantas
6.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724420

RESUMO

Gene drives offer the possibility of altering and even suppressing wild populations of countless plant and animal species, and CRISPR technology now provides the technical feasibility of engineering them. However, population-suppression gene drives are prone to select resistance, should it arise. Here, we develop mathematical and computational models to identify conditions under which suppression drives will evade resistance, even if resistance is present initially. Previous models assumed resistance is allelic to the drive. We relax this assumption and show that linkage between the resistance and drive loci is critical to the evolution of resistance and that evolution of resistance requires (negative) linkage disequilibrium between the two loci. When the two loci are unlinked or only partially so, a suppression drive that causes limited inviability can evolve to fixation while causing only a minor increase in resistance frequency. Once fixed, the drive allele no longer selects resistance. Our analyses suggest that among gene drives that cause moderate suppression, toxin-antidote systems are less apt to select for resistance than homing drives. Single drives of moderate effect might cause only moderate population suppression, but multiple drives (perhaps delivered sequentially) would allow arbitrary levels of suppression. The most favorable case for evolution of resistance appears to be with suppression homing drives in which resistance is dominant and fully suppresses transmission distortion; partial suppression by resistance heterozygotes or recessive resistance are less prone to resistance evolution. Given that it is now possible to engineer CRISPR-based gene drives capable of circumventing allelic resistance, this design may allow for the engineering of suppression gene drives that are effectively resistance-proof.


Assuntos
Tecnologia de Impulso Genético/métodos , Modelos Genéticos , Seleção Genética , Animais , Sistemas CRISPR-Cas , Frequência do Gene , Aptidão Genética , Desequilíbrio de Ligação , Plantas/genética
7.
J Math Biol ; 80(1-2): 93-110, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30848332

RESUMO

Previous metapopulation models developed to examine consequences of habitat destruction and metapopulation Allee effects are biologically plausible for only small degrees of habitat destruction. For larger, realistic amounts of habitat destruction, those models fail to capture a metapopulation Allee effect. We here present a new model that allows biologically meaningful metapopulation Allee effects at all feasible levels of habitat destruction. When applied to metacommunities of competitive species that face habitat destruction, this new model shows that metapopulation Allee effects may drastically alter predictions about the fates of the competitors compared to when Allee effects are ignored. In particular, the number of extinctions increase, the times to those extinctions decrease, and the order in which the extinctions occur can change dramatically.


Assuntos
Ecossistema , Extinção Biológica , Modelos Biológicos , Animais , Dinâmica Populacional
8.
PeerJ ; 7: e7921, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681512

RESUMO

Gene drives may be used in two ways to curtail vectored diseases. Both involve engineering the drive to spread in the vector population. One approach uses the drive to directly depress vector numbers, possibly to extinction. The other approach leaves intact the vector population but suppresses the disease agent during its interaction with the vector. This second application may use a drive engineered to carry a genetic cargo that blocks the disease agent. An advantage of the second application is that it is far less likely to select vector resistance to block the drive, but the disease agent may instead evolve resistance to the inhibitory cargo. However, some gene drives are expected to spread so fast and attain such high coverage in the vector population that, if the disease agent can evolve resistance only gradually, disease eradication may be feasible. Here we use simple models to show that spatial structure in the vector population can greatly facilitate persistence and evolution of resistance by the disease agent. We suggest simple approaches to avoid some types of spatial structure, but others may be intrinsic to the populations being challenged and difficult to overcome.

10.
Ecol Evol ; 8(12): 6342-6353, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29988442

RESUMO

Genotype-by-environment interaction (G × E), that is, genetic variation in phenotypic plasticity, is a central concept in ecology and evolutionary biology. G×E has wide-ranging implications for trait development and for understanding how organisms will respond to environmental change. Although G × E has been extensively documented, its presence and magnitude vary dramatically across populations and traits. Despite this, we still know little about why G × E is so evident in some traits and populations, but minimal or absent in others. To encourage synthetic research in this area, we review diverse hypotheses for the underlying biological causes of variation in G × E. We extract common themes from these hypotheses to develop a more synthetic understanding of variation in G × E and suggest some important next steps.

11.
Evol Appl ; 10(5): 471-484, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28515780

RESUMO

Many populations are doomed to extinction, but little is known about how evolution contributes to their longevity. We address this by modeling an asexual population consisting of genotypes whose abundances change independently according to a system of continuous branching diffusions. Each genotype is characterized by its initial abundance, growth rate, and reproductive variance. The latter two components determine the genotype's "risk function" which describes its per capita probability of extinction at any time. We derive the probability distribution of extinction times for a polymorphic population, which can be expressed in terms of genotypic risk functions. We use this to explore how spontaneous mutation, abrupt environmental change, or population supplementation and removal affect the time to extinction. Results suggest that evolution based on new mutations does little to alter the time to extinction. Abrupt environmental changes that affect all genotypes can have more substantial impact, but, curiously, a beneficial change does more to extend the lifetime of thriving than threatened populations of the same initial abundance. Our results can be used to design policies that meet specific conservation goals or management strategies that speed the elimination of agricultural pests or human pathogens.

13.
PLoS One ; 10(4): e0124419, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898267

RESUMO

We hypothesized that the ongoing naturalization of frost/shade tolerant Asian bamboos in North America could cause environmental consequences involving introduced bamboos, native rodents and ultimately humans. More specifically, we asked whether the eventual masting by an abundant leptomorphic ("running") bamboo within Pacific Northwest coniferous forests could produce a temporary surfeit of food capable of driving a population irruption of a common native seed predator, the deer mouse (Peromyscus maniculatus), a hantavirus carrier. Single-choice and cafeteria-style feeding trials were conducted for deer mice with seeds of two bamboo species (Bambusa distegia and Yushania brevipaniculata), wheat, Pinus ponderosa, and native mixed diets compared to rodent laboratory feed. Adult deer mice consumed bamboo seeds as readily as they consumed native seeds. In the cafeteria-style feeding trials, Y. brevipaniculata seeds were consumed at the same rate as native seeds but more frequently than wheat seeds or rodent laboratory feed. Females produced a median litter of 4 pups on a bamboo diet. Given the ability of deer mice to reproduce frequently whenever food is abundant, we employed our feeding trial results in a modified Rosenzweig-MacArthur consumer-resource model to project the population-level response of deer mice to a suddenly available/rapidly depleted supply of bamboo seeds. The simulations predict rodent population irruptions and declines similar to reported cycles involving Asian and South American rodents but unprecedented in deer mice. Following depletion of a mast seed supply, the incidence of Sin Nombre Virus (SNV) transmission to humans could subsequently rise with dispersal of the peridomestic deer mice into nearby human settlements seeking food.


Assuntos
Bambusa/crescimento & desenvolvimento , Animais , Simulação por Computador , Dieta , Feminino , Preferências Alimentares , Espécies Introduzidas , Masculino , Peromyscus , Pinus ponderosa , Crescimento Demográfico , Quercus , Sementes , Triticum
14.
Am Nat ; 185(5): 594-609, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25905503

RESUMO

Plastic changes in organisms' phenotypes can result from either abiotic or biotic effectors. Biotic effectors create the potential for a coevolutionary dynamic. Through the use of individual-based simulations, we examined the coevolutionary dynamic of two species that are phenotypically plastic. We explored two modes of biotic and abiotic interactions: ecological interactions that determine the form of natural selection and developmental interactions that determine phenotypes. Overall, coevolution had a larger effect on the evolution of phenotypic plasticity than plasticity had on the outcome of coevolution. Effects on the evolution of plasticity were greater when the fitness-maximizing coevolutionary outcomes were antagonistic between the species pair (predator-prey interactions) than when those outcomes were augmenting (competitive or mutualistic). Overall, evolution in the context of biotic interactions reduced selection for plasticity even when trait development was responding to just the abiotic environment. Thus, the evolution of phenotypic plasticity must always be interpreted in the full context of a species' ecology. Our results show how the merging of two theory domains--coevolution and phenotypic plasticity--can deepen our understanding of both and point to new empirical research.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Comportamento Predatório , Animais , Fenótipo , Seleção Genética
15.
Proc Natl Acad Sci U S A ; 110(51): 20627-32, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297938

RESUMO

A key goal of invasion biology is to identify the factors that favor species invasions. One potential indicator of invasiveness is the phylogenetic distance between a nonnative species and species in the recipient community. However, predicting invasiveness using phylogenetic information relies on an untested assumption: that both biotic resistance and facilitation weaken with increasing phylogenetic distance. We test the validity of this key assumption using a mathematical model in which a novel species is introduced into communities with varying ecological and phylogenetic relationships. Contrary to what is generally assumed, we find that biotic resistance and facilitation can either weaken or intensify with phylogenetic distance, depending on the mode of interspecific interactions (phenotype matching or phenotype differences) and the resulting evolutionary trajectory of the recipient community. Thus, we demonstrate that considering the mechanisms that drive phenotypic divergence between native and nonnative species can provide critical insight into the relationship between phylogenetic distance and invasibility.


Assuntos
Modelos Biológicos , Fenótipo , Filogenia
16.
Environ Entomol ; 42(6): 1299-308, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24246613

RESUMO

Vectors of several economically important plant viruses have been shown to feed or settle preferentially on either infected or noninfected host plants. Recent research has revealed that the feeding or settling preferences of insect vectors can depend on whether a vector is inoculative (carries the virus). To explore the implications of such changes in vector preference for the spread of the pathogen, we create a basic model of disease spread, incorporating vector preferences for infected and noninfected plants dependent on whether the vector is inoculative. Previous modeling work assumed that vector preferences remain unchanged with vector infection status and showed that vector preference for infected host plants promotes disease spread when infected hosts are rare, whereas preference for noninfected hosts promotes spread once infected hosts become abundant. In contrast, our model shows that a change in preference following acquisition of the pathogen can increase pathogen spread throughout the epidemic if noninoculative vectors prefer infected plants and inoculative vectors prefer noninfected plants, as has been detected experimentally in two pathosystems. Our results show that conditional vector preference can substantially influence plant pathogen spread, with implications for agricultural and natural systems. Conditional preference as a component of virus manipulation of vector behavior is potentially more important for the understanding of plant disease spread than previously recognized.


Assuntos
Insetos Vetores , Modelos Biológicos , Doenças das Plantas , Animais , Insetos Vetores/genética
17.
Evolution ; 67(11): 3290-304, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24152008

RESUMO

Theoretical studies have demonstrated that selection will favor increased migration when fitnesses vary both temporally and spatially, but it is far from clear how pervasive those theoretical conditions are in nature. Although consumer-resource interactions are omnipresent in nature and can generate spatial and temporal variation, it is unknown even in theory whether these dynamics favor the evolution of migration. We develop a mathematical model to address whether and how migration evolves when variability in fitness is determined at least in part by consumer-resource coevolutionary interactions. Our analyses show that such interactions can drive the evolution of migration in the resource, consumer, or both species and thus supplies a general explanation for the pervasiveness of migration. Over short time scales, we show the direction of change in migration rate is determined primarily by the state of local adaptation of the species involved: rates increase when a species is locally maladapted and decrease when locally adapted. Our results reveal that long-term evolutionary trends in migration rates can differ dramatically depending on the strength or weakness of interspecific interactions and suggest an explanation for the evolutionary divergence of migration rates among interacting species.


Assuntos
Migração Animal , Evolução Biológica , Cadeia Alimentar , Adaptação Biológica , Modelos Genéticos
18.
Philos Trans R Soc Lond B Biol Sci ; 368(1610): 20120089, 2013 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-23209170

RESUMO

Population persistence in a new and stressful environment can be influenced by the plastic phenotypic responses of individuals to this environment, and by the genetic evolution of plasticity itself. This process has recently been investigated theoretically, but testing the quantitative predictions in the wild is challenging because (i) there are usually not enough population replicates to deal with the stochasticity of the evolutionary process, (ii) environmental conditions are not controlled, and (iii) measuring selection and the inheritance of traits affecting fitness is difficult in natural populations. As an alternative, predictions from theory can be tested in the laboratory with controlled experiments. To illustrate the feasibility of this approach, we briefly review the literature on the experimental evolution of plasticity, and on evolutionary rescue in the laboratory, paying particular attention to differences and similarities between microbes and multicellular eukaryotes. We then highlight a set of questions that could be addressed using this framework, which would enable testing the robustness of theoretical predictions, and provide new insights into areas that have received little theoretical attention to date.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Fenótipo , Animais , Bactérias , Comportamento Competitivo , Meio Ambiente , Extinção Biológica , Aptidão Genética/fisiologia , Mutação , Plantas , Densidade Demográfica , Dinâmica Populacional , Seleção Genética , Estresse Fisiológico
19.
Philos Trans R Soc Lond B Biol Sci ; 368(1610): 20120093, 2013 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-23209173

RESUMO

Laboratory model systems and mathematical models have shed considerable light on the fundamental properties and processes of evolutionary rescue. But it remains to determine the extent to which these model-based findings can help biologists predict when evolution will fail or succeed in rescuing natural populations that are facing novel conditions that threaten their persistence. In this article, we present a prospectus for transferring our basic understanding of evolutionary rescue to wild and other non-laboratory populations. Current experimental and theoretical results emphasize how the interplay between inheritance processes and absolute fitness in changed environments drive population dynamics and determine prospects of extinction. We discuss the challenge of inferring these elements of the evolutionary rescue process in field and natural settings. Addressing this challenge will contribute to a more comprehensive understanding of population persistence that combines processes of evolutionary rescue with developmental and ecological mechanisms.


Assuntos
Evolução Biológica , Magnoliopsida/fisiologia , Fenótipo , Adaptação Fisiológica , Clima , Ecossistema , Pesquisa Empírica , Extinção Biológica , Variação Genética , Magnoliopsida/genética , Modelos Biológicos , Sementes/fisiologia , Seleção Genética , Estresse Fisiológico
20.
Ecology ; 93(9): 2001-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23094371

RESUMO

Healthy ecosystems include many species (high richness) with similar abundances (high evenness). Thus, both aspects of biodiversity are worthy of conservation. Simultaneously conserving richness and evenness might be difficult, however, if, for example, the restoration of previously absent species to low densities brings a cost in reduced evenness. Using meta-analysis, we searched for benefits to biodiversity following adoption of two common land-management schemes: the implementation of organic practices by farmers and of controlled burning by natural-land managers. We used rarefaction to eliminate sampling bias in all of our estimates of richness and evenness. Both conservation practices significantly increased evenness and overall abundance across taxonomic classifications (arthropods, birds, non-bird vertebrates, plants, soil organisms). Evenness and richness varied independently, leading to no richness-evenness correlation and no significant overall change in richness. Demonstrating the importance of rarefaction, analyses of raw data that did not receive rarefaction indicated misleadingly strong benefits of organic agriculture and burning for richness while underestimating true gains in evenness. Both organic farming and burning favored species that were not numerically dominant, re-balancing communities as uncommon species gained individuals. Our results support the assertion that richness and evenness capture separate facets of biodiversity, each needing individual attention during conservation.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Ecossistema , Incêndios , Animais , Plantas , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...